天天AV狠狠操_亚洲乱伦图_黄色1网站_一道本久在线中文字幕

院系設置
科學研究
人才招聘
崇文講堂第一百零四期:三維對流擴散方程的差分有限元方法
發(fā)布日期:20241029   來源:文理學院/文化藝術(shù)學院   編輯:張文楨   瀏覽:234

崇文講堂第一百零四期

三維對流擴散方程的差分有限元方法


講座時間:11月2日16:00—17:00

講座地點:C4-219

主講嘉賓:馮新龍


主講人簡介

馮新龍,博士,教授(二級),博士生導師。享受國務院特殊津貼專家,國家重大人才工程特聘教授。研究領(lǐng)域為計算數(shù)學、計算流體力學、不確定性量化、人工智能與機器學習等。擁有中國準精算師資格,曾擔任中國核學會計算物理學會理事,中國計算數(shù)學學會理事,中國數(shù)學會理事,目前擔任中國高等教育學會教育數(shù)學專業(yè)委員會常務理事、副秘書長等。主持完成多項國家自然科學基金項目,在國際著名期刊合作發(fā)表學術(shù)論文百余篇。


講座內(nèi)容簡介

 In this work, a difference finite element (DFE) method is proposed for solving 3D steady convection-diffusion equations that can maximize good applicability and efficiency of both FDM and FEM. The essence of this method lies in employing the centered difference discretization in the z-direction and the FE discretization based on the P1 conforming elements in the (x,y)- plane. This allows us to solve PDEs on complex cylindrical domains at lower computational costs compared to applying the 3D FEM. We derive the stability estimates for the DFE solution and establish the explicit dependence of H1-error bounds on the diffusivity, convection field modulus, and mesh size. Moreover, a compact DFE method is presented for the similar problems. Finally, numerical examples are provided to verify the theoretical predictions and showcase the accuracy of the considered method.